Kazhdan-Laumon Categories and Representations

Calder Morton-Ferguson Department of Mathematics, MIT

caldermf@mit.edu

1. Background

- We work with a split reductive group G over a finite field \mathbb{F}_q with Weyl group W. Kazhdan-Laumon categories were defined in 1988 by Kazhdan and Laumon ([1]) by gluing tuples of perverse sheaves on the basic affine space G/U indexed by the Weyl group W. This gluing is done in analogy to constructing the abelian category of sheaves on a variety by gluing the categories of sheaves on an open cover. In this analogy, transition functions between open sets are replaced by symplectic Fourier-Deligne transforms $\Phi_w: G/U \to G/U$ indexed by Weyl group elements.
- Kazhdan and Laumon planned to use the Grothendieck groups of these categories to provide a new geometric construction of discrete series representations of $G(\mathbb{F}_q)$, but their construction relied on their conjecture that these categories each had finite cohomological dimension, which was found to be false by Bezrukavnikov and Polishchuk in [2] (even for the case $G = SL_3$).
- This poster is a summary of three recent projects which seek to (1) better understand Kazhdan-Laumon categories in the context of modern representation-theoretic objects, (2) understand symplectic Fourier transforms and their connection to knot/braid theory, and (3) carry out Kazhdan and Laumon's original construction by modifying their conjecture in an appropriate way.

2. Kazhdan-Laumon Categories

- **Definition.** The Kazhdan-Laumon category \mathcal{A} associated to G is the abelian category of tuples $(A_w)_{w \in W}$ of perverse sheaves on G/U indexed by the Weyl group equipped with "compatible" morphisms $\Phi_s A_w \to A_{sw}$ for any $s \in S$, $w \in W$.
- **Definition.** The Kazhdan-Laumon category \mathcal{O} , which we call \mathcal{A}_B , is the full subcategory of tuples of *B*-equivariant perverse sheaves on G/U.
- For any $w \in W$, let P(w) denote the standard parabolic subgroup of W generated by the simple reflections $s \in S$ for which l(ws) > l(w).
 - Theorem 1. (M-F., [3]) Any simple object in \mathcal{A}_B is a tuple such that for some fixed $w \in W$ and left coset P(w)z, its yth entry is IC_w if $y \in P(w)z$ and 0 otherwise.

3. Combinatorics and the Semiinfinite Flag Variety

The following theorems concern the Kazhdan-Laumon category \mathcal{O} , which we call \mathcal{A}_B .

- Theorem 2. (M-F., [3]) The category \mathcal{A}_B has Grothendieck group isomorphic as a $\mathbb{C}[W] \otimes$ \mathcal{H}_q -module to a submodule of Lusztig's periodic Hecke module.
- Theorem 3. (M-F., [3]) This combinatorial observation can be interpreted in terms of the sheaf-function dictionary to give a connection between \mathcal{A}_B and Braverman-Kazhdan's Schwartz space on G/U.
- Theorem 4. (M-F., [3]) We can categorify these observations about K_0 to get an equivalence between \mathcal{A}_B and a subcategory of perverse sheaves on the semi-infinite flag variety.

- Accordingly, simple objects in \mathcal{A}_B are in bijection with pairs $(w, \overline{w'})$, where $w \in W$, and $\overline{w'}$ is an element of $P(w) \setminus W$.
- For SL_2 , there are 3 simple objects: $(\mathrm{IC}_e, \mathrm{IC}_e), (\mathrm{IC}_s, 0), (0, \mathrm{IC}_s).$ For SL_3 , there are 19.
- The Fourier-Deligne transforms Φ_w become easier to describe in the Bequivariant case, where they give an action of the Hecke category via convolution with costandard objects, whereas they are much more complicated in general: we pursue a general description in Section 4.

6. References

[1] D. Kazhdan and G. Laumon. Gluing of perverse sheaves and discrete series representation. J. Geom. Phys., 5(1):63-120, 1988.

4. Braids and Symplectic Fourier Transforms

In [4], we study the symplectic Fourier-Deligne transform endomorphisms of $K_0(G/U)$ directly. Their action defines a quotient of the group algebra of the braid group, and though certain relations were understood, it was unknown how to characterize this quotient.

- There is a known algebra defined by Aicardi, Juyumaya, and Marin called the *generalized* algebra of braids and ties and a canonical subalgebra generated by the "Juyumaya generators" which can be described purely diagramatically.
- Theorem 5. (M-F., [4]) Kazhdan and Laumon's symplectic Fourier-Deligne transform endomorphisms on G/U give a categorification of this subalgebra. Further, this gives a geometric interpretation of certain well-known facts about the algebra of braids and ties.

- Alexander Polishchuk. Gluing of perverse |2| sheaves on the basic affine space. Selecta Math. (N.S.), 7(1):83–147, 2001. With an appendix by R. Bezrukavnikov and the author.
- Calder Morton-Ferguson. Kazhdan-Laumon 3 Category \mathcal{O} , Braverman-Kazhdan Schwartz space, and the semi-infinite flag variety, 2022.
- Morton-Ferguson. Symplectic |4| Calder Fourier-Deligne transforms on G/U and the algebra of braids and ties, 2023.

5. Revisiting Kazhdan and Laumon's Conjecture

- Conjecture (Kazhdan-Laumon, [1]). Kazhdan-Laumon categories each have finite cohomological dimension, and this fact can be used to construct a well-defined "Grothendieck-Lefschetz" pairing" on the Grothendieck group. Taking the quotient by the kernel of this pairing yields a new construction of discrete series representations of $G(\mathbb{F}_q)$.
- Proposition (Bezrukavnikov-Polishchuk, [2]). This conjecture is false. However, a new conjecture about "rationality" of the Grothendieck group of Kazhdan-Laumon categories would be enough to salvage the attempted construction of representations.
- **Ongoing work.** Leveraging our understanding of Kazhdan-Laumon categories from above to prove Bezrukavnikov-Polishchuk's conjecture and finally provide a well-defined construction of Kazhdan-Laumon representations.